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ABSTRACT 

In a provocative and influential paper, Jesse Rothstein (2010) finds that standard value-added 
models (VAMs) suggest implausible future teacher effects on past student achievement, a finding 
that obviously cannot be viewed as causal. This is the basis of a falsification test (the Rothstein 
falsification test) that appears to indicate bias in VAM estimates of current teacher contributions to 
student learning. 

Rothstein’s finding is significant because there is considerable interest in using VAM teacher 
effect estimates for high-stakes teacher personnel policies, and the results of the Rothstein test cast 
considerable doubt on the notion that VAMs can be used fairly for this purpose. However, in this 
paper, we illustrate—theoretically and through simulations—plausible conditions under which the 
Rothstein falsification test rejects VAMs even when there is no bias in estimated teacher effects, and 
even when students are randomly assigned conditional on the covariates in the model. On the 
whole, our findings show that the “Rothstein falsification test” is not definitive in showing bias, 
which suggests a much more encouraging picture for those wishing to use VAM teacher effect 
estimates for policy purposes. 
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I. 
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Rothstein cited his falsification test results and said that value-added is “not fair to…special needs 
teachers…[or] other specialists.”3
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Rothstein questions whether standard VAMs produce unbiased estimates of teacher effect on 
student learning.9 In particular, he describes a number of ways in which the processes governing the 
assignment of students to teachers may lead to erroneous conclusions about teacher effectiveness. 
Of particular concern is the possibility that students may be tracked into particular classrooms based 
on skills that are not accounted for by Ai(g-1).

10

B. Bias in VAM Teacher Effect Estimates  

 

If equation 1 is estimated using ordinary least squares, the estimated impacts of a teacher can be 
biased for a number of reasons. To derive a formula for this bias, we divide the error term (eig) into 
two components—ovig, which, if it exists, we assume to be correlated with at least some of the 
covariates included in the model even after controlling for the others, and euig, which is uncorrelated 
with any of the covariates in the model. 

Thus, 

eig = �J’ovig + euig 

where �J is the coefficient on ovig. �J is also the coefficient that would be obtained on ovig, were it 
added to equation 1. 

It should be noted that, by definition, if ovig exists it would cause bias for at least some 
coefficient estimates. However, as we describe below, it can exist and not necessarily cause bias for 
the estimated teacher effects. 

The general formula for omitted variable bias for the effect of teacher t takes the form: 

��

Bias( ˆ �E��t ) � E( ˆ �E��t ) �� �Et � �J�Ste 

where 

 = estimate of  and 

�Ste = coefficient on �Wtig from a regression of ovig on all right-hand side variables in equation 1 
(except eig). 

It can be shown that, 
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than students who are otherwise similar.16

C. Rothstein’s Falsification Test  
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results. We do this because it provides a means of concisely comparing the Rothstein falsification 
and bias tests. 

For simplicity, in comparing the Rothstein and bias tests in this section of our paper we utilize a 
simple VAM with only one school and two teachers in each grade (in Section III we show 
simulations with more complex data structures). The dummy for one teacher is omitted from the 
regression and the current grade teacher assignment depends entirely on lagged achievement. Thus: 

(3)18

where cov(eig,Ai(g-1)) = cov(eig,�W1ig) = 0. 

  Aig= �OAi(g-1) + �E1g�W1ig+eig 

We specify a flexible functional form for tracking for teacher 1 (the one with higher value 
added): 

�W1ig = T(Ai(g-1))
19

Rothstein’s falsification test is based on a regression of lagged achievement on current 
achievement and future teachers.

 

20
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The numerator in R1g is the covariance between current teachers and the residual from a 
regression of double-lagged achievement on current achievement.22

(5) Ai(g-2) =���O�� Aig +ui(g-2) 

 

If R1g is 0 then �O����equals �O�� and ui(g-2) equals wi(g-2). Thus, one can test to see if R1g differs from 0 
using the following covariance: 

cov(�W1ig, ui(g-2)|Ai(g-1) 1<d
[>d
[0t.
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where w1 and w2 are weights chosen to generate errors with the specified variances and correlations 
across grades. The uig variables are uncorrelated across grades so the errors separated by two or 
more periods are also uncorrelated. 

As noted above, some models include an omitted variable that impacts tracking decisions. That 
variable also impacts current achievement scores. It is not correlated with lagged achievement. 

For each model, we tested to see if the model was rejected using the Rothstein falsification test 
and also if the impact estimates for grade 5 teachers were biased.33

We present five sets of results in Table 1. The first set of columns (under “Results by 
Condition”) demonstrates how the Rothstein test performed based on the three conditions 
discussed above. The second set of columns (under “Linear Falsification Test”) covers findings 
when grade 4 achievement was 
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Table 1 . Simulation Results for Rothstein Falsification Test and Bias Test, by Model  

Parameter  Results by Condition  Linear Falsification Test  
Negatively Correlated 

Errors  Failing to Falsify  
Rejecting 

RA 
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In columns 7, 8, and 9 (under “Negatively Correlated Errors”), we present conditions under 
which the Rothstein test did identify bias. In column 7, we generated data with no tracking. 
Therefore there was no bias and the Rothstein test did not reject. This is in spite of the fact that the 
model had negatively correlated errors and lagged teacher effects so that the grade 3 and 4 test 
scores were no longer linearly related. When there was tracking (as in column 8), there was bias and 
the Rothstein test appropriately rejected. However, the amount of bias may have little policy 
relevance as the correlation between the estimated and true teacher effects was close to 1 after 
adjusting for estimation error.37 In addition, we did not find statistically significant bias here though 
this was due only to a lack of precision.38

The results in column 9 help to illustrate why the model used in column 8 resulted in so little 
bias. In particular, in column 9, we show that if the baseline scores and double-lagged scores were 
linearly related (that is, there were no lagged teacher effects), then there would be no bias. Under 
those conditions, the baseline test can control for the negatively correlated errors (as discussed in 
Appendix B).

 

39

If we knew that the error terms were negatively correlated but were unsure if there was tracking, 
then the Rothstein test would provide evidence of at least some bias. However, given that tracking in 
schools is quite likely, evidence of negatively correlated errors is itself evidence of bias.  And, as noted earlier, one 
cannot use the Rothstein test to check for bias caused by negatively correlated errors because it is 
not possible to determine whether the test is rejecting because of the negative correlation or because 
of one of the other conditions specified above. 

 While it is not likely 
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IV. CONCLUSION 

As we noted in the outset of this paper, Rothstein’s critique of value-added methods used to 
estimate teacher effectiveness has been cited by both research and policymaking communities as a 
reason to doubt the wisdom of using VAMs for high-stakes purposes. The findings we present here, 
however, call into question whether the Rothstein falsification approach provides accurate guidance 
regarding the bias of teacher effect estimates. 

Ideally, 
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lagged achievement.46

E(A
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To generate normally distributed baseline scores (and unbiased estimated teacher effect 
estimates), 
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