N 🚬	S ,	V°,
Universal gravitational constant	G	$6.67 imes 10^{-11} \ { m N} {ullet} { m m}^2/{ m kg}^2$
Acceleration due to gravity	g	9.81 m/s ²
Speed of light in a vacuum	<i>Ì</i>	$3.00 \times 10^8 \text{ m/s}$
Speed of sound in air at STP		$3.31 \times 10^2 \text{ m/s}$
Mass of Earth		$5.98 imes10^{24}\mathrm{kg}$
Mass of the Moon		$7.35 imes10^{22}\mathrm{kg}$
Mean radius of Earth		$6.37 imes 10^6 \mathrm{~m}$
Mean radius of the Moon		$1.74 imes 10^6 \mathrm{~m}$
Mean distance—Earth to the Moon		$3.84 imes 10^8 \mathrm{~m}$
Mean distance—Earth to the Sun		$1.50 \times 10^{11} \mathrm{m}$
Electrostatic constant	¢	$8.99 imes 10^9 \ \mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2$
1 elementary charge	Ŀ	$1.60 imes 10^{-19} ext{ C}$
1 coulomb (C)		6.25×10^{18} elementary charges
1 electronvolt (eV)		$1.60 imes 10^{-19}~\mathrm{J}$
Planck's constant	7	$6.63 imes10^{-34}~{ m J} ho{ m s}$
1 universal mass unit (u)		$9.31 imes 10^2 \ { m MeV}$

Page 2	2
--------	---

$$F_{\downarrow} = \frac{\ell q_1 q_2}{r^2}$$

$$E = \frac{F_{\downarrow}}{q}$$

$$= \frac{-q}{q}$$

$$I = \frac{\Delta q}{t}$$

$$= \frac{\rho L}{A}$$

$$P = I = I^2 = \frac{-2}{q}$$

$$= Pt = It = I^2 t = \frac{-2t}{q}$$

S, **C**, **r**

$$I = I_1 = I_2 = I_3 = \dots$$

 $= 1 + 2 + 3 + \dots$
 $q = 1 + 2 + 3 + \dots$

A = cross-sectional areaE = electric field strength F_{\downarrow} = electrostatic force I = currentelectrostatic constant L =length of conductor P = electrical power q = charge= resistance $_{,q}$ = equivalent resistance r = distance between centers t = time= potential difference = work (electrical energy) $\Delta = change$ $\rho = resistivity$

$$\mathbf{P}, \quad \vdots, \quad \mathbf{C}, \quad f \in \mathbf{C}$$

$$I = I_1 + I_2 + I_3 + \dots$$

$$= 1 = 2 = 3 = \dots$$

$$\frac{1}{2^q} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots$$

	20
М ", .	R $\mathbf{u}^{\mathbf{u}}$ (Ω•m)
Aluminum	$2.82 imes10^{-8}$
Copper	$1.72 imes10^{-8}$
Gold	$2.44 imes10^{-8}$
Nichrome	$150. imes 10^{-8}$
Silver	$1.59 imes10^{-8}$
Tungsten	$5.60 imes10^{-8}$

 $= \oint \lambda$ T = $\theta_{r} = \theta_{r}$ = $1 \sin \theta_{1} = 2 \sin \theta_{2}$ = =

$$E_{a} t = \beta f =$$

$$E_{a} t = E_{a} - E_{f}$$

$$E = m e^{2}$$

$$\begin{array}{c} - = \stackrel{\checkmark}{t} \\ a = \frac{\Delta}{t} \\ g = \cdot + at \\ \stackrel{\checkmark}{\rightarrow} = \cdot t + \frac{1}{2}at^{2} \\ \stackrel{?}{f}^{2} = \cdot \cdot^{2} + 2a \stackrel{\checkmark}{\rightarrow} \\ A_{y} = A \sin \theta \\ A_{x} = A \cos \theta \\ a = \frac{F_{,t}}{t} \\ F_{g} = \mu F_{N} \\ F_{g} = \frac{G ta_{1} ta_{2}}{r^{2}} \\ g = \frac{F_{g}}{t} \\ \stackrel{\checkmark}{=} ta \\ PE = \frac{1}{2} \epsilon x^{2} \\ F_{,z} = taa_{,z} \\ a_{,z} = \frac{2}{r} \\ \Delta PE = tag \Delta p \\ KE = \frac{1}{2} ta^{2} \\ = F \stackrel{\checkmark}{=} aE_{T} \\ E_{T} = PE + KE + Q \\ P = \frac{1}{t} = \frac{F \stackrel{\checkmark}{=} F^{-}}{t} = F^{-} \end{array}$$

a = acceleration a_{\downarrow} = centripetal acceleration A = any vector quantity \dot{f} = displacement or distance E_T = total energy F =force F_{\downarrow} = centripetal force $F_{\mathbf{q}}$ = force of friction F_{σ} = weight or force due to gravity F_N = normal force $F_{t} = \text{net force}$ F =force on a spring g = acceleration due to gravity or gravitational field strength G = universal gravitational constant *≱* = height I = impulse $\epsilon =$ spring constant KE = kinetic energy a = massP = powerPE = potential energy*PE* = potential energy stored in a spring Q = internal energyr = radius or distance between centers t = time interval= velocity or speed – average velocity or average speed = work x = change in spring length from the equilibrium position $\Delta = change$ $\theta = angle$ μ = coefficient of friction